The non-adaptive query complexity of testing k-parities
نویسندگان
چکیده
We prove tight bounds of Θ(k logk) queries for non-adaptively testing whether a function f : {0,1}→{0,1} is a k-parity or far from any k-parity. The lower bound combines a recent method of Blais, Brody and Matulef [4] to get lower bounds for testing from communication complexity with an Ω(k logk) lower bound for the one-way communication complexity of k-disjointness.
منابع مشابه
2 TESTING MONOTONICITY : O ( n ) UPPER BOUND
1 Overview 1.1 Last time • Proper learning for P implies property testing of P (generic, but quite inefficient) • Testing linearity (over GF[2]), i.e. P = {all parities}: (optimal) O 1-query 1-sided non-adaptive tester. • Testing monotonicity (P = {all monotone functions}: an efficient O n-query 1-sided non-adaptive tester.
متن کاملAdaptivity Helps for Testing Juntas
We give a new lower bound on the query complexity of any non-adaptive algorithm for testing whether an unknown Boolean function is a k-junta versus ε-far from every k-junta. Our lower bound is that any non-adaptive algorithm must make Ω ( k log k εc log(log(k)/εc) ) queries for this testing problem, where c is any absolute constant < 1. For suitable values of ε this is asymptotically larger tha...
متن کاملDistribution-free Junta Testing
We study the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0, 1}n. Our first main result is that distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorith...
متن کاملSettling the Query Complexity of Non-Adaptive Junta Testing
We prove that any non-adaptive algorithm that tests whether an unknown Boolean function f : {0, 1} → {0, 1} is a k-junta or -far from every k-junta must make Ω̃(k/ ) many queries for a wide range of parameters k and . Our result dramatically improves previous lower bounds from [BGSMdW13, STW15], and is essentially optimal given Blais’s non-adaptive junta tester from [Bla08], which makes Õ(k)/ qu...
متن کاملImproved Bounds for Testing Juntas
We consider the problem of testing functions for the property of being a k-junta (i.e., of depending on at most k variables). Fischer, Kindler, Ron, Safra, and Samorodnitsky (J. Comput. Sys. Sci., 2004 ) showed that Õ(k)/ queries are sufficient to test k-juntas, and conjectured that this bound is optimal for non-adaptive testing algorithms. Our main result is a non-adaptive algorithm for testin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chicago J. Theor. Comput. Sci.
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013